Contribution à la cristallochimie des isotypes de ThCr₂Si₂ et CaBe₂Ge₂

I. Les systèmes $LaT_{2-x}T'_{x}Ge_{2}$ (T, T' = Ru, Rh, Pd, Ir, Pt) et $La_{1-x}Ca_{x}Ir_{2}Ge_{2}$: Distribution des éléments de transition dans le type $CaBe_{2}Ge_{2}$

G. VENTURINI, B. MALAMAN, ET B. ROQUES

Laboratoire de Chimie du Solide Minéral, associé au CNRS No. 158, Université de Nancy I, BP 239, 54506 Vandoeuvre les Nancy Cedex, France

Received October 24, 1988

Il y a plusieurs singularités dans les systèmes étudiés. Bien que les trois germaniures LaT_2Ge_2 (T = Ru, Rh, Pd) soient isotypes de ThCr₂Si₂, seuls $LaRu_2Ge_2$ et $LaRh_2Ge_2$ sont totalement miscibles; dans le système $LaRh_2Ge_2$ -LaPd₂Ge₂, il y a des solutions solides intermédiaires de type CaBe₂Ge₂. Les paramètres cristallins des isotypes de ThCr₂Si₂ varient curieusement en fonction de la concentration d'électrons de valence VEC. Les isotypes de CaBe₂Ge₂ sont localisés dans un étroit domaine de VEC. Le nouveau germaniure CaIr₂Ge₂ est ainsi de type ThCr₂Si₂ alors que LaIr₂Ge₂ est isotype de CaBe₂Ge₂. Ce sont les atomes T = Ir et Pt qui ont la plus forte affinité pour les sites pyramidaux du type CaBe₂Ge₂. Ces résultats sont discutés. © 1989 Academic Press, Inc.

There are several singularities in the systems investigated. Although the three germanides LaT_2Ge_2 (T = Ru, Rh, Pd) are isostructural with ThCr₂Si₂, a complete solid solution occurs only between LaRu₂Ge₂ and LaRh₂Ge₂; in the system LaRh₂Ge₂-LaPd₂Ge₂, there is a range of CaBe₂Ge₂-type solid solutions. The lattice constants of the ThCr₂Si₂-type compounds vary curiously according to the valence electron concentration (VEC). The CaBe₂Ge₂-type germanides are confined in a narrow range of VEC. The new compound CaIr₂Ge₂ is then of the ThCr₂Si₂-type while LaIr₂Ge₂ is of the CaBe₂Ge₂-type. In the latter structural type, the square pyramids of Ge atoms are favorite sites for Ir or Pt atoms. These results are discussed. © 1989 Academic Press, Inc.

1. Introduction

Les intermétalliques ternaires de types Th Cr_2Si_2 et $CaBe_2Ge_2$, dérivés ordonnés du type BaAl₄, forment une vaste famille qui compte notamment quelques 200 siliciures et germaniures d'éléments des terres rares et de métaux de transition; les isotypes de Th Cr_2Si_2 sont d'ailleurs beaucoup plus nombreux que ceux de CaBe₂Ge₂.

Plusieurs auteurs ont essayé de définir les facteurs qui déterminent la stabilité et les 0022-4596/89 \$3.00

Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved. évolutions paramétriques de ces structures: certains, comme Pearson et Villars (1), par des considérations géométriques, d'autres, comme Hoffmann et Zheng (2, 3), à partir d'un modèle de structure de bandes.

En étudiant de nouveaux germaniures RT_2Ge_2 (R = La et lanthanoïdes, T = Ru, Rh, Ir) (4), nous avons noté plusieurs faits curieux:

-de très fortes différences entre les valeurs des rapports c/a des paramètres des isotypes de Th Cr_2Si_2 au ruthénium et au rhodium, différences déjà constatées entre les siliciures correspondants (5, 6);

—l'isotypic des germaniures d'iridium et R = La-Nd avec CaBe₂Ge₂ alors que les composés correspondants de T = Ru, Rh, sont isotypes de ThCr₂Si₂, comme ceux de T = Pd(7); une transformation allotropique ThCr₂Si₂-CaBe₂Ge₂ avait d'ailleurs été caractérisée dans les siliciures d'iridium RIr_2Si_2 (R = La-Ho) (8-11);

—la différence de structure entre EuIr₂ Ge₂, isotype de ThCr₂Si₂ et dans lequel l'europium est manifestement divalent, et les composés RIr_2Ge_2 des éléments trivalents, R = La-Nd; la taille de Eu(II) ne permettait pas de trancher entre un effet stérique et un effet de concentration électronique.

Par ailleurs, une étude des germaniures MPt_2Ge_2 (M = La-Dy, Ca) nous a montré que leurs structures monocliniques étaient des variantes déformées du type CaBe₂Ge₂ (12). Dans les solutions solides LaPt_{2-x}T_x Ge₂ (T = Ru, Rh, Pd, Ag, Ir), de faibles substitutions du platine (x > 0,2) suppriment la déformation et rétablissent la symétrie quadratique du type CaBe₂Ge₂ (P4/nmm).

L'ensemble de ces données nous a incités à examiner les systèmes suivants:

-La $T_{2-x}T'_x$ Ge₂ associant deux par deux les métaux de la mine du platine: T, T' =Ru, Rh, Pd, Ir et Pt, afin de préciser les particularités paramétriques des isotypes de ThCr₂Si₂ et les stabilités relatives des deux types ThCr₂Si₂ et CaBe₂Ge₂,

 $-La_{1-x}Ca_xIr_2Ge_2$, le calcium ne pouvant pas avoir un effet de taille car il est beaucoup plus petit que l'europium II dans les intermétalliques, avec un volume atomique voisin de celui du néodyme.

Ce travail a été complété par la détermination de structures isotypes de $CaBe_2Ge_2$, sur monocristaux. Les quaternaires suivants ont été analysés: --LaPt_{2-x} T_x Ge₂ (T =Ru, Rh, Pd) et La Ir_{2-x}Pd_xGe₂, pour déterminer la distribution des éléments de transition et comparer les distances interatomiques,

—une nouvelle phase intermédiaire du système $LaRh_2Ge_2-LaPd_2Ge_2$, pour vérifier son isotypie avec $CaBe_2Ge_2$ et mesurer les distances interatomiques.

2. Rappel des analogies et differences entre les types ThCr₂Si₂ et CaBe₂Ge₂

Les deux types Th Cr_2Si_2 et CaBe₂Ge₂ sont des variantes de distribution des métalloïdes symbolisés ici par X, et des petits atomes métalliques, ici T ou T', dans la structure de BaAl₄ (fig. 1a).

Ils se distinguent par la dimensionnalité du sous-réseau des atomes T ou T' et X =Si, Ge, . . . :

—couches parallèles de tétraèdres TX_4 , reliées les unes aux autres par des paires X-X, dans le type ThCr₂Si₂ (fig. 1b).

-assemblage tridimensionnel de couches alternées de tétraèdres TX_4 et de pyramides carrées TX_5 , dans le type CaBe₂ Ge₂ (fig. 1c).

Le remplacement des liaisons X-X par des T-X confère une plus grande rigidité aux structures de type CaBe₂Ge₂; les valeurs de leur rapport c/a varient peu autour de 2,3, alors que celles des isotypes de Th Cr₂Si₂ sont beaucoup plus fluctuantes.

3. Conditions operatoires

Les alliages ont été synthétisés à partir de mélanges de leurs constituants (poudres ou limaille à 99,9% au moins); après un frittage, les échantillons sont fondus au four à induction puis recuits plusieurs fois à 1173 K. Leur composition a été déterminée par analyse à la microsonde électronique. Leurs paramètres cristallins ont été affinés par une méthode de moindres carrés à partir des distances réticulaires mesurées sur

FIG. 1. (a) Structure de BaAl₄. (b) Structure de ThCr₂Si₂. (c) Structure de CaBe₂Ge₂.

des clichés pris en chambre de Guinier (rayonnement $CuK\alpha$), avec un étalon de silicium.

Des monocristaux ont été extraits d'échantillons de formules LaPtTGe₂ (T =

Ru, Rh, Pd), LaIrPdGe₂ et LaRhPdGe₂, fondus au four à induction. Plusieurs cristaux de chaque lot ont été analysés à la microsonde électronique; nous avons ainsi constaté qu'ils avaient une composition

Alliages	$LaPt_{1,42}Pd_{0,58}Ge_2$	$LaPt_{1,14}Rh_{0,86}Ge_2$	$LaPt_{1,22}Ru_{0,78}Ge_2$	$LaIr_{1,20}Pd_{0,80}Ge_2$	LaRh _{0,95} Pd _{1,05} Ge ₂
Rayon moyen du crystal (µm)	~10	~15	~10	~20	~25
Coeff. d'absorp- tion μ (mm ⁻¹)	37,4	39,3	37,9	37,2	20,5
Nombre d'intensi- tés:					
Enregistrées	252	248	246	251	243
Uniques non nulles	202	197	199	204	194
retenues $(\sigma(I)/I < 0.30)$	156	149	151	145	142
F(000)	490	488	486	488	424
R (%)	4,8	4,0	4,5	4,9	3,4

TABLEAU I

Déterminations structurales: Conditions d'enregistrement des données et résultats des affinements

Note. Monochromateur en graphite, balayage $\theta - 2\theta$, Rayonnement AgK α , domaine de Bragg 1-23°, 11 variables affinées (sauf pour LaRh_{0.05}Pd_{1.05}P

sensiblement constante mais le plus souvent différente de celle de l'alliage de départ. Un cristal de chaque lot a été étudié sur un diffractomètre Nonius CAD4. Les conditions d'enregistrement des intensités diffractées sont précisées dans le tableau I.

Le programme SHELX (13) a permis de déterminer la répartition des éléments de transition dans les sites pyramidaux et tétraédriques, sauf évidemment dans les alliages de rhodium et palladium. Le programme DISBUS (14) a été utilisé pour évaluer les distances interatomiques.

TABLEAU II

Solutions solides $LaRu_{2-x}Rh_xGe_2$: Caractéristiques cristallographiques et nombre d'électrons de valence par unité formulaire (NEV)

Alliages	a (Å)	c (Å)	cla	V (Å ³)	NEV
LaRu ₂ Ge ₂	4,288(4)	10,13(1)	2,36	186,3	27.0
$LaRu_{1.85}Rh_{0.15}Ge_2$	4,283(2)	10,17(1)	2,37	186,6	27,1
LaRu1.20Rh0.80Ge2	4,248(4)	10,28(1)	2,42	185.6	27.8
LaRu ₀₁₅ Rh ₁₈₅ Ge ₂	4,189(3)	10.52(1)	2.51	184.6	28.8
LaRh ₂ Ge ₂	4,184(4)	10,54(1)	2,52	184,5	29,0
LaRh ₂ Ge ₂	4,184(4)	10,54(1)	2,52	184,5	29

4. Les systemes $LaT_{2-x}T'_xGe_2$ (T, T' = Ru, Rh, Pd, Ir, Pt) et $La_{1-x}Ca_xIr_2Ge_2$

Les tableaux II à V précisent la composition et les caractéristiques cristallographiques des limites de toutes les phases présentes dans les systèmes étudiés. Dans la solution complète LaRh_{2-x}Ru_xGe₂, les variations de paramètres cristallins et du rapport c/a ont été déterminées en fonction de x.

TABLEAU III

Compositions limites des alliages de type ThCr₂Si₂: Caractéristiques cristallographiques et nombre d'électrons de valence par unité formulaire (NEV)

Alliages	a (Å)	c (Å)	c/a	V (Å ³)	NEV
LaRu _{1.74} Pd _{0.26} Ge ₂	4,257(3)	10,30(1)	2,42	186,7	27,5
LaRu1.74Pt0.26Ge2	4,258(2)	10,27(1)	2,41	186,1	27.5
LaRu _{0.80} Ir _{1.20} Ge ₂	4,235(4)	10,34(1)	2,44	185,4	28,2
LaRh1.91Pd0.09Ge2	4,185(2)	10,54(1)	2.52	184,4	29.1
LaRh1.60Ir0.40Ge2	4,180(2)	10,55(1)	2,52	184,3	29,0
LaRh1.94Pt0.06Ge2	4,183(4)	10,54(1)	2,52	184,4	29.1
LaPd _{1.84} Ru _{0.16} Ge ₂	4,348(4)	10,13(1)	2,33	191.5	30,7
LaPd _{1.92} Ir _{0.08} Ge ₂	4,376(3)	10,05(1)	2,30	192.3	30.9
LaPd1 44Pt0.56Ge2	4,380(2)	10.04(1)	2,29	192.6	31.0
LaPd1 76Rh0.24Ge2	4,356(1)	10,08(1)	2,31	191,4	30.8
$Ca_{0,52}La_{0,48}Ir_2Ge_2$	4,157(3)	10,37(1)	2,49	179,2	28,5

Compositions limites des alliages de type Ca Be₂Ge₂: Caractéristiques cristallographiques et nombre d'électrons de valence par unité formulaire (NEV)

Alliages	a (Å)	c (Å)	c/a	V (Å ³)	NEV
LaIr _{1.70} Ru _{0.30} Ge ₂	4,298(4)	10,02(1)	2,33	185,2	28,7
LaIr _{0.60} Rh _{1.40} Ge ₂	4,285(3)	10,06(1)	2,35	184,8	29,0
LaIr _{0.48} Pd _{1.52} Ge ₂	4,377(4)	9,96(1)	2,28	190,9	30,5
$LaPt_{1,18}Ru_{0,82}Ge_2$	4,314(4)	10,12(1)	2,35	188,4	29,4
LaPt015Rh185Ge2	4,285(3)	10,07(1)	2.35	184.8	29.1
LaPto 70Pd1 30Ge2	4,379(3)	10.02(1)	2.29	192.1	31.0
La _{0,89} Ca _{0,11} Ir ₂ Ge ₂	4,257(4)	10,14(1)	2,38	183,9	28,9

TABLEAU V

Solutions solides $LaRh_{2-x}Pd_xGe_2$ de type $CaBe_2$ Ge₂: Caractéristiques cristallographiques et nombre d'électrons de valence par unité formulaire (NEV)

Alliages	a (Å)	c (Å)	c/a	V (Å ³)	NEV
LaRh1 77Pd0 23Ge2	4,283(4)	10,09(1)	2,35	185,0	29,2
LaRh 60Pdo 40Ge2	4,291(3)	10,10(1)	2,35	185,9	29,4
LaRh _{1.00} Pd _{1.00} Ge ₂	4,341(4)	9,98(1)	2,30	188,0	30,0
LaRh0,66Pd1,34Ge2	4,362(3)	9,98(1)	2,29	189,9	30.3

Les sections des diagrammes de phases à 1173 K sont représentées sur la figure 2, en fonction du nombre NEV d'électrons de valence par unité formulaire quand les éléments alliés, T et T' ou La et Ca, proviennent de groupes différents. Sur la figure 3, les valeurs du rapport c/a des paramètres de toutes les compositions analysées sont aussi portées en fonction du NEV.

Une première remarque s'impose au sujet des systèmes de deux isotypes de ThCr₂ Si₂. En effet, seuls LaRu₂Ge₂ et LaRh₂Ge₂ sont totalement miscibles alors que le système $LaRu_2Ge_2-LaPd_2Ge_2$ ne comporte que des solutions solides terminales très limitées, de même que le système $LaRh_2$ $Ge_2-LaPd_2Ge_2$ où il y a par contre un large domaine intermédiaire d'isotypes de Ca Be_2Ge_2 .

Sur la figure 3, on voit d'ailleurs que les rapports c/a de tous les isotypes de ThCr₂ Si₂ varient fortement et uniformément en fonction du NEV, tout en se répartissant dans deux groupes:

—un premier qui s'étend, en croissant, de NEV = 27 (LaRu₂Ge₂) jusqu'à des NEV voisins de 29 (LaRh₂Ge₂),

FIG. 2. $LaT_{2-x}T'_xGe_2$ et $La_{1-x}Ca_xIr_2Ge_2$: Sections des diagrammes de phases à 1173 K en fonction du nombre d'électrons de valence par unité formulaire (NEV).

FIG. 3. La $T_{2-x}T'_x$ Ge₂ et La_{1-x}Ca_xIr₂Ge₂: Variations du rapport c/a en fonction du NEV.

—un second, de valeurs encore plus faibles que celle de LaRu₂Ge₂, regroupé au voisinage de NEV = 31 (LaPd₂Ge₂).

Il y a donc une évolution structurale continue entre LaRu₂Ge₂ et LaRh₂Ge₂, et ces deux germaniures se différencient nettement de LaPd₂Ge₂, malgré l'isotypie et la similitude des rapports c/a de ce dernier composé et de LaRu₂Ge₂.

Dans les systèmes $LaRu_2Ge_2$ ou $LaRh_2$ Ge₂-LaPt₂Ge₂, il n'y a aussi que des solutions très limitées de type ThCr₂Si₂, alors que les isotypes ou variantes déformées de CaBe₂Ge₂ s'étendent dans un domaine relativement large de NEV, de 31 (LaPt₂Ge₂) jusqu'au voisinage de 29.

Dans les systèmes à NEV variable formés à partir de LaIr₂Ge₂, on constate que cette phase isotype de CaBe₂Ge₂ supporte un large accroissement de NEV, par dissolution du palladium, alors qu'elle dissout très peu de ruthénium. Ce fait se confirme dans le système La_{1-x}Ca_xIr₂Ge₂ où il n'y a qu'un étroit domaine d'isotypes de Ca Be₂Ge₂, à côté d'une solution étendue de lanthane dans CaIr₂Ge₂ qui est isotype de ThCr₂Si₂. Ce nouveau composé du calcium a le même volume formulaire que NdIr₂ Ge₂, isotype de CaBe₂Ge₂. C'est donc un facteur électronique, et non pas stérique, qui détermine le changement de structure des germaniures d'iridium, isotypes de Ca Be₂Ge₂ avec R = La-Nd, et de ThCr₂Si₂ avec le calcium ou l'europium (II).

Dans la figure 2, la situation de l'ensemble des compositions isotypes ou variantes déformées de CaBe₂Ge₂ fait bien ressortir l'influence de la concentration électronique sur la stabilité de ce type structural. Le domaine correspondant de NEV est assez étroit, compris entre 28,5 et 31.

On sait que la transformation ThCr₂Si₂-CaBe₂Ge₂ implique la suppression de liaisons X-X, remplacées par des T-X. Les stabilités relatives de ces deux types dépendent donc probablement de la position du niveau de Fermi dans leurs structures de bande, position plus ou moins favorable à l'une ou l'autre de ces liaisons X-X et T-X; d'où l'influence de la concentration d'électrons de valence. Comme le niveau de Fermi dépend non seulement du nombre d'électrons mais aussi de leurs niveaux d'énergie, il peut y avoir des différences entre les composés des métaux $Rh(4d^9)$ et $Ir(5d^9)$ ou $Pd(4d^{10})$ et $Pt(5d^{10})$.

 $LaRh_2Ge_2$ et $LaPd_2Ge_2$ semblent d'ailleurs constituer des limites de stabilité pour le type $ThCr_2Si_2$, compte-tenu des transformations en $CaBe_2Ge_2$ provoquées par des taux de substitution très faibles à faibles:

—du rhodium par les métaux d^{10} (Pd, Pt) ou par l'iridium,

-du palladium par les métaux $d^{9}(Rh, Ir)$ ainsi que par le platine (fig. 2).

Ou peut enfin remarquer les variations

relativement faibles du rapport c/a des isotypes de CaBe₂Ge₂ (fig. 3), confirmation de la rigidité de ce type structural.

5. Structures cristallines de quaternaires isotypes de CaBe₂Ge₂

Le tableau VI rassemble les résultats relatifs aux cinq alliages étudiés sous forme de monocristaux, résultats des analyses à la microsonde électronique et par diffraction X. Les paramètres cristallins sont dans le tableau VII et les distances interatomiques dans le tableau VIII.

TABLEAU VI

Coordonnées atomiques des alliages quaternaires étudiés, facteurs d'agitation thermique individuels et isotropes et écarts types (entre parenthèses)

Alliages	Atomes	Sites	x	у	z	B (Å ²)	m
$LaPt_{2-x}Pd_xGe_2$	La	2(c)	14	14	0,7461(3)	0,32(6)	_
x = 0,58 (2)	$Pt_1[Pd_1]$	2(c)	$\frac{1}{4}$	1	0,3782(2)	0,47(2)	0,96[0,04](4)
$x_x = 0,56$ (7)	$Pt_2[Pd_2]$	2(a)	34	$\frac{1}{4}$	0	0,82(10)	0,48[0,52](4)
	Ge ₁	2(c)	14	<u>1</u> 4	0,1287(7)	0,63(10)	
$x_i = 1$	Ge ₂	2(b)	34	<u>1</u> 4	$\frac{1}{2}$	0,29(10)	
$LaPt_{2-x}Rh_xGe_2$	La	2(c)	$\frac{1}{4}$	14	0,7451(3)	0,43(5)	_
x = 0,86 (2)	$Pt_{1}[Rh_{1}]$	2(c)	14	1 4	0,3746(2)	0,49(6)	0,83[0,17](3)
$x_x = 0.85$ (4)	$Pt_2[Rh_2]$	2(a)	34	14	0	0,62(6)	0,32[0,68](1)
	Ge1	2(c)	<u>1</u> 4	<u>1</u> 4	0,1298(7)	0,85(11)	
$x_i = 1$	Ge ₂	2(b)	3 4	1 4	$\frac{1}{2}$	0,41(9)	_
$LaPt_{2-x}Ru_xGe_2$	La	2(c)	$\frac{1}{4}$	1	0,7471(4)	0,48(6)	_
x = 0,78 (2)	Pt ₁ [Ru ₁]	2(c)	$\frac{1}{4}$	14	0,3735(3)	0,54(6)	0,91[0,09](3)
$x_x = 0.81$ (6)	$Pt_2[Ru_2]$	2(a)	<u>3</u> 4	<u>1</u> 4	0	0,34(10)	0,28[0,72](3)
	Ge ₁	2(c)	$\frac{1}{4}$	1 4	0,1241(8)	0,73(11)	_
$x_i = 1$	Ge ₂	2(b)	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0,39(11)	_
LaIr _{2-x} Pd _x Ge ₂	La	2(c)	14	<u>1</u> 4	0,7435(6)	0,64(8)	_
x = 0,80 (2)	$Ir_{1}[Pd_{1}]$	2(c)	14	14	0,3755(4)	0,47(7)	0,78[0,22](4)
$x_x = 0,82$ (8)	$lr_2[Pd_2]$	2(a)	34	14	0	0,74(11)	0,40[0,60](4)
	Ge ₁	2(c)	14	$\frac{1}{4}$	0,1291(11)	0,88(13)	
$x_i = 1$	Ge_2	2(b)	<u>3</u> 4	1 4	$\frac{1}{2}$	0,61(12)	—
$LaRh_{2-x}Pd_xGe_2$	La	2(c)	14	14	0,7451(3)	0,45(4)	_
x = 1,05 (2)	$Rh_1[Pd_1]$	2(c)	1 4	1 4	0,3753(4)	0,60(6)	—
$x_x = \text{non affiné}$	$Rh_2[Pd_2]$	2(a)	34	1 4	0	0,69(6)	_
	Ge_1	2(c)	$\frac{1}{4}$	14	0,1290(5)	0,81(9)	_
$x_i = 1$	Ge ₂	2(b)	3 4	1 4	$\frac{1}{2}$	0,73(9)	

Note. Groupe spatial: P4/nmm. Les indices x_x ont été déterminés à partir des taux d'occupation m affinés à l'aide de la procédure FVAR du programme SHELX (13). Les indices x résultent de l'analyse des cristaux à la microsonde. Les indices x_i sont ceux des alliages de départ.

TABLEAU VII Caractéristiques cristallographiques des cristaux étudiés (cf. texte et tableau I)

Alliages	a (Å)	c (Å)	c/a	V (Å ³)
$LaPt_{1.42}Pd_{0.58}Ge_2$	4,373(2)	9,914(7)	2,27	189,6
LaPt _{1 14} Rh _{0 86} Ge ₂	4,306(3)	10,080(10)	2,34	186,9
$LaPt_{1,22}Ru_{0,78}Ge_2$	4,305(2)	10,130(9)	2,35	187,7
$LaIr_{1,20}Pd_{0,80}Ge_{2}$	4,335(3)	9,964(6)	2,30	187,2
$LaRh_{0.95}Pd_{1.05}Ge_2$	4,322(4)	9,986(8)	2,31	186,5

L'examen du tableau VI montre d'abord que les cristaux au rhodium et au palladium ont pratiquement conservé la composition de l'alliage fondu: LaRh_{0,95}Pd_{1,05}Ge₂ au lieu de LaRhPdGe₂; il ne laisse aucun doute au sujet de la structure de la solution solide intermédiaire du système LaRh₂Ge₂-LaPd₂ Ge₂ qui est bien de type CaBe₂Ge₂.

Les autres cristaux ont par contre des compositions différentes de celles des liquides dont ils sont issus. Les cristallisations se sont sûrement déroulées dans des conditions très éloignées des équilibres solide-liquide; c'est très fréquent, notamment pour le procédé que nous avons utilisé, de fusion de petits échantillons sur sole refroidie. La diffraction X garantit néanmoins que ces cristaux ont une composition uniforme, les raies ou taches de diffraction étant toujours très fines.

D'après les résultats des déterminations structurales, il est clair que le platine et l'iridium occupent préférentiellement les sites pyramidaux et les métaux T = Ru, Rh, Pd, les sites tétraédriques.

Ce fait est à rapprocher de l'une des conclusions du modèle de structure de bande établi par Zheng et Hoffmann (3); d'après ce modèle, le sous-réseau des coordinations pyramidales des atomes métalliques Tserait moins stable que celui de leurs coordinations tétraédriques, en raison notamment de la différence d'électronégativité entre leurs constituants T et X. Si cette idée est juste, les électronégativités de l'iridium et du platine sont plus proches de celle du germanium que celles des éléments 4d: Ru, Rh et Pd.

Les taux de distribution de ces éléments 4d sont très voisins dans les deux sites des germaniures LaPt_{2-x} T_x Ge₂. On peut en déduire les constantes des équilibres,

$$T_{\rm pyra} + {\rm Pt}_{\rm tétra} = T_{\rm tétra} + {\rm Pt}_{\rm pyra}$$

 $K = (T_{tétra})(Pt_{pyra})/(T_{pyra})(Pt_{tétra})$, mais celles-ci ne sont significatives que si elles sont indépendantes de la composition globale et donc de l'indice x des alliages considérés. Comme ce n'est pas démontré et que les valeurs de K ainsi obtenues sont très peu différentes:

$$\frac{\text{LaPt}_{2-x}T_x\text{Ge}_2 \quad T= \quad \text{Ru} \quad \text{Rh} \quad \text{Pd}}{K= \quad 3.8 \times 10^{-2} \quad 9.6 \times 10^{-2} \quad 3.8 \times 10^{-2}}$$

Il est impossible de classer ces éléments Ten fonction de leurs affinités relatives pour les deux sites du type CaBe₂Ge₂.

		1-1-1-1-12			20 11 12 210		()		
	$M_1($	M'1)	$M_2(M'_2)$			L	.a		
Atomes	Ge ₁	4Ge ₂	4Ge ₁	4Ge ₁	4Ge ₂	Geı	$4M_1(M_1')$	$4M_2(M'_2)$	$M_{I}(M'_{1})$
LaPt _{1,42} Pd _{0,58} Ge ₂	2,473(7)	2,498(1)	2,531(3)	3,328(2)	3,276(3)	3,793(8)	3,328(2)	3,334(3)	3,648(5)
LaPt1,14Rh0,86Ge2	2,467(8)	2,497(2)	2,520(4)	3,295(3)	3,277(3)	3,878(9)	3,275(2)	3,352(3)	3,735(5)
LaPt _{1,22} Ru _{0,78} Ge ₂	2,526(9)	2,505(2)	2,493(4)	3,312(4)	3,301(3)	3,819(10)	3,280(2)	3,346(3)	3,785(8)
$\begin{array}{l} LaIr_{1,20}Pd_{0,80}Ge_{2} \\ LaPd_{1,05}Rh_{0,95}Ge_{2} \end{array}$	2,455(11) 2,460(7)	2,497(2) 2,494(3)	2,520(6) 2,516(3)	3,317(5) 3,304(3)	3,253(5) 3,265(3)	3,842(7) 3,833(7)	3,287(3) 3,284(3)	3,351(5) 3,339(3)	3,667(8) 3,693(6)

TABLEAU VIII La T_{1-} , T'_{-} Ge: Principales distances interatomiques (Å)

L'examen des distances interatomiques (tableau VIII) montre qu'une seule d'entre elles varie sensiblement parmi les divers composés étudiés: la distance d_1 entre le métal en site pyramidal et l'atome Ge₁ situé au sommet de la pyramide. Nous avons donc comparé cette distance d_1 à la distance d_2 , prise comme référence, entre le même métal et les atomes Ge₂ qui délimitent la base carrée de la pyramide.

Les variations de $(d_1 - d_2)$ sont représentées sur la figure 4 en fonction du nombre NEV d'électrons de valence. Elles présentent un minimum au voisinage de NEV = 29,8 qui est précisément la valeur autour de laquelle se stabilise la solution intermédiaire LaRh_{2-x}Pd_xGe₂ de type CaBe₂Ge₂ (fig. 2). Le renforcement de cette liaison *T*-Ge pourrait donc compenser l'affinité relativement faible du rhodium et du palladium pour le site pyramidal.

Cette interprétation correspondrait bien à une autre conclusion de Zheng et Hoffmann (3) qui se résume comme suit: la stabilité relativement faible des couches de pyramides par rapport à celle de tétraèdres favorise le type $ThCr_2Si_2$ par rapport au

FIG. 4. La $T_{2-x}T'_x$ Ge₂: Variations de $(d_1 - d_2)$ en fonction du NEV (cf. texte).

type CaBe₂Ge₂; par contre, les interactions T-X interplanaires sont favorables à l'empilement mixte, pyramides-tétraèdres, du type CaBe₂Ge₂. Nos résultats semblent montrer que la force de ces interactions dépend beaucoup du nombre NEV d'électrons de valence. Ceci expliquerait que les germaniures de métaux de transition, MT_2 Ge₂, ne soient isotypes de CaBe₂Ge₂ que dans un étroit domaine de NEV, compris entre 28,8 et 31 environ.

6. Conclusion

Les structures de type ThCr₂Si₂ ont un large domaine de stabilité en fonction de la concentration électronique mais ce paramètre a tout de même des effets sur ce type structural, à en juger par les singularités des germaniures LaT_2Ge_2 où T = Ru, Rh et Pd: fortes variations du rapport c/a, larges lacunes de miscibilité entre le composé du palladium et ceux de T = Ru, Rh. Ces particularités ne peuvent résulter que de changements mineurs au sein de ces structures: variation de la coordonnée z des atomes de germanium et déformation des polyèdres de coordination. Nous avons donc prolongé notre étude par des déterminations structurales sur monocristaux, dans une gamme de compositions MT₂Ge₂ permettant de dégager les effets stériques et électroniques. Ce travail constitue la deuxième partie de notre article.

La concentration électronique apparaît par contre comme un facteur essentiel de la stabilité du type $CaBe_2Ge_2$, peut-être en raison de son effet sur les interactions T-X qui unissent les deux types de polyèdres de coordination des métaux T: pyramides à base carrée et tétraèdres de X. Les métaux 5d: Ir et Pt, ont d'ailleurs beaucoup plus d'affinité que les 4d pour la coordination pyramidale, peut-être parce que leur électronégativité est plus proche de celle des semi-métaux X = Ge ou Si.

Remerciements

Nous remercions les services communs de diffractométrie et de microanalyse de l'Université de Nancy I dont nous avons utilisé les matériels.

Références

- W. B. PEARSON ET P. VILLARS, J. Less-Common Met. 97, 119 (1984); J. Less-Common Met. 97, 133 (1984).
- 2. R. HOFFMANN ET C. ZHENG, J. Phys. Chem. 89, 4175 (1985).
- 3. C. ZHENG ET R. HOFFMANN, J. Amer. Chem. Soc. 108, 3078 (1986).
- M. FRANÇOIS, G. VENTURINI, J. F. MARÉCHÉ, B. MALAMAN, ET B. ROQUES, J. Less-Common. Met. 113, 231 (1985).
- 5. C. GODART, L. C. GUPTA, ET M. F. RAVET-KRILL, J. Less-Common Met. 94, 187 (1983).

- 6. I. FELNER ET I. NOWICK, Phys. Chem. Solids 46(6), 681 (1985).
- 7. D. ROSSI, R. MARAZZA, ET R. FERRO, J. Less-Common Met. 66, 17 (1979).
- 8. H. F. BRAUN, N. ENGEL, ET E. PARTHE, *Phys. Rev. B* 28, 1389 (1983).
- 9. P. LEJAY, I. HIGASHI, B. CHEVALIER, M. HIRJAK, J. ETOURNEAU, ET P. HAGENMULLER, C.R. Acad. Sci. 236, 1583 (1983).
- M. HIRJAK, B. CHEVALIER, J. ETOURNEAU, ET P. HAGENMULLER, Mater. Res. Bull. 19, 727 (1984).
- WANG-XIAN-ZHONG, B. LLORET, WEE LAM NY, B. CHEVALIER, J. ETOURNEAU, ET P. HAGEN-MULLER, Rev. Chim. Miner. 22, 711 (1985).
- 12. G. VENTURINI, B. MALAMAN, ET B. ROQUES, J. Less-Common Met., sous presse (1988).
- 13. G. M. SHELDRICK, SHELX76, Program for Crystal Structure Determination, Univ. of Cambridge (1976).
- 14. W. R. BUSING, K. O. MARTIN, ET M. A. LEVY, ORFLS, Oak Ridge National Laboratory Report ORNL-TM-305 (1962).